
Filtering of spin currents based on a ballistic ring

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 395020

(http://iopscience.iop.org/0953-8984/19/39/395020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 06:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/39
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 395020 (14pp) doi:10.1088/0953-8984/19/39/395020

Filtering of spin currents based on a ballistic ring

S Bellucci1 and P Onorato1,2

1 INFN, Laboratori Nazionali di Frascati, PO Box 13, 00044 Frascati, Italy
2 Department of Physics ‘A. Volta’, University of Pavia, Via Bassi 6, I-27100 Pavia, Italy

Received 27 June 2007, in final form 19 July 2007
Published 30 August 2007
Online at stacks.iop.org/JPhysCM/19/395020

Abstract
Quantum interference effects in rings provide suitable means for controlling
spin at mesoscopic scales. Here we apply such a control mechanism to the
spin dependent transport in a ballistic quasi-one-dimensional ring patterned in
two-dimensional electron gases (2DEGs). The study is essentially based on the
natural spin–orbit (SO) interactions, one arising from the laterally confining
electric field (β term) and the other due to the quantum well potential that
confines electrons in the 2DEG (conventional Rashba SO interaction or α
term). We focus on single-channel transport and solve analytically for the spin
polarization of the current. As an important consequence of the presence of spin
splitting, we find the occurrence of spin dependent current oscillations.

We analyze the transport in the presence of one non-magnetic obstacle in
the ring. We demonstrate that a spin polarized current can be induced when an
unpolarized charge current is injected in the ring, by focusing on the central role
that the presence of the obstacle plays.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years both experimental and theoretical physics communities have devoted a great deal
of attention to the field of quantum electronics [1]. In particular a big effort has been devoted
to the study and the realization of electric field controlled spin based devices [2]. The main
problem raised in this field is the generation of spin polarized carriers and their appropriate
manipulation. In order to realize a fully spin based circuitry, the interplay between spin–
orbit (SO) coupling and quantum confinement in semiconductor heterostructures can provide
a useful tool to manipulate the spin degree of freedom of electrons by coupling to their orbital
motion, and vice versa.

Recently many works have been focusing on the so-called spin Hall effect [3–6] and
most of the implementations in two-dimensional electron gases (2DEGs) proposed for the spin
manipulation are mainly based upon the SO interaction, which can be seen as the interaction
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of the electron spin with the magnetic field appearing in the rest frame of the electron. The SO
Hamiltonian reads [7]

ĤSO = −λ
2
0

h̄
eE(r)

[
σ̂ ×

(
p̂ + e

c
A(r)

)]
. (1)

Here E(r) is the electric field, σ̂ are the Pauli matrices, p̂ is the canonical momentum operator,
A(r) is a vector potential, r is a three-dimensional position vector and λ2

0 = h̄2/(2m0c)2, where
m0 denotes the electron mass in vacuum. In materials m0 and λ0 are replaced by their effective
values m∗ and λ.

In this paper we consider low dimensional electron systems formed by quasi-one-
dimensional (Q1D) devices patterned in 2DEGs. In such systems there can be different types
of natural SO interaction, such as: (i) the so-called Dresselhaus term which originates from
the inversion asymmetry of the zinc-blende structure [8], (ii) the Rashba (α coupling) term due
to the quantum well potential [9] that confines electrons to a 2D layer, and (iii) the confining
(β coupling) term arising from the in-plane electric potential that is applied to squeeze the
2DEG into a quasi-one-dimensional channel [9, 10].

In this paper we focus on the aspects of spin interference in ballistic Q1D ring geometries
with two leads subject to natural α and β SO coupling. In fact coherent ring conductors
enable one to exploit the distinct interference effects of electron spin and charge which
arise in these doubly connected geometries. This opens up the area of spin dependent
Aharonov–Bohm physics, including topics such as Berry phases [11]3, spin related conductance
modulation [17, 18], persistent currents [12, 19], spin filters [20] and detectors [21], spin
rotation [22, 23], and spin switching mechanisms [13, 14, 24].

In some earlier papers [28] the spin induced modulation of unpolarized currents, as a
function of the Rashba coupling strength, was discussed, often for in the presence of an external
magnetic field. In this paper we present a different mechanism based on the natural constant
Rashba coupling, without the help of an external magnetic field. Here we also analyze the
effects due to the β coupling. As was discussed in several papers [25–27] the in-plane electric
potential, applied to patterned Q1D devices, can yield a high electric field in the plane of the
2DEG, leading to a sizable β term. In the above cited references, where this SO term was
investigated by taking into account the sole confining potential, it was demonstrated that in
some devices (such as a narrow Q1D wire) the effect of the β SO term is analogous to that
of a uniform effective magnetic field, Beff, orthogonal to the 2DEG (x–y plane), and directed
upward or downward according to the spin polarization along the z direction.

The goals of the following treatment are: (a) checking the presence of the spin splitting
in a Q1D ring due to the β and (b) to the natural α SO coupling; (c) investigating quantum
interference effects in rings; (d) analyzing the spin induced modulation of unpolarized currents
due to the SO term; (e) the discussion of the transport in the presence of a non-magnetic
obstacle.

In order to pursue our aims we first analyze the β coupling case, and then we discuss the
apparently more difficult case of the α coupling.

In section 2 we discuss the analogies between the presence of a β SO coupling and a
transverse magnetic field in a Q1D narrow channel. Thus, we introduce the Hamiltonian for
the Q1D ring, in order to calculate the eigenvalues and eigenstates and the spin splitting. In
section 3 we present the ballistic approach to the transport through the ring and the quantum
interference effects by analyzing the oscillations in the transmission. In section 4 we discuss
the possible spin induced modulation of unpolarized currents also in the presence of a non-
magnetic obstacle. In section 5 we extend our analysis to the α (Rashba) coupling by showing

3 Several theoretical proposals [12–14] (see also [46, 47]) as well as experimental realizations [15, 16] exist.
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the analogies with the β case. We demonstrate how the presence of a non-magnetic obstacle
can produce a significant spin current by giving a novel mechanism for the ring based quantum
spin filtering.

2. β SO coupling: model and relevant parameters

2.1. β SO coupling and effective magnetic field

In this section we neglect the α (Rashba) coupling and the Dresselhaus term, so that the SO
Hamiltonian in equation (1) results as a very simplified form [29]:

Ĥ β

SO = λ2

h̄
σ̂z

[
∇Vc(r)×

(
p̂ + e

c
A

)]
z
. (2)

We can limit ourselves to the z component, because the motion perpendicular to the 2DEG is
quantum mechanically frozen out (i.e. with a mean value 〈pz〉 = 0 in the ground state, for the
potential well in the z direction), while we assume that no external magnetic field is present so
that A = 0. Notice that Sz commutes with the Hamiltonian in equation (2), implying that the ẑ
component of the spin is preserved in the motion through the device. Thus the total Hamiltonian
of an electron moving in a confining potential Vc(r) is equivalent to that of a charged particle
in a transverse magnetic field, but here the sign of Beff(r) depends on the direction of the spin
along ẑ [25].

2.2. A Q1D channel

The basic brick of our device are narrow quantum wires (QWs), that are devices of width
W less than 1000 Å [30] and length up to some microns (here we think to a QW where
W ∼ 5–100 nm). In these devices quantum effects are affecting transport properties. In
fact, because of the confinement of conduction electrons in the transverse direction of the wire,
their transverse energy is quantized into a series of discrete values. From a theoretical point of
view a QW is usually defined by a parabolic confining potential along the transverse direction
x̂ , with force ωd [31] i.e. Vc(x) = m∗

2 ω
2
d x2.

In the special case of a QW e∇Vc(r) ≡ m∗ω2
d(x, y, 0) thus

Beff = λ2

h̄

m∗2ω2
d c

e
≡ β

h̄lω

m∗c

e
, (3)

where lω = √
h̄/m∗ωd , while β ≡ λ2m∗ω2

dlω. Next, we introduce the effective cyclotron
frequency ωc = β

h̄lω
(ωc/ωd = λ2/ lω), the related frequency ω2

0 = ω2
d − ω2

c and the total

frequency ωT =
√
ω2

0 + ω2
c , thus

Ĥ0 + Ĥ β

SO = ω2
0

ω2
T

p2
y

2m∗ + p2
x

2m∗ + m∗ω2
T

2
(x − x0)

2, (4)

where x0 = s ωc py

ω2
Tm∗ , s = ±1, corresponds to the spin polarization along the z direction. Hence

we can conclude that four split channels are present for a fixed Fermi energy, εF, corresponding
to ±py and sz = ±1. Notice the analogy with the Hamiltonian corresponding to one electron
in the QW when an external transverse magnetic field is present.

2.3. The Q1D ring

Here we outline briefly the derivation of the Hamiltonian describing the motion of an electron
in a realistic Q1D ring [32]. We consider the 2DEG in the xy plane; then we introduce a radial

3
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potential Vc(r), so that the electrons are confined to move in a ring. The full single-electron
Hamiltonian reads

H = p2

2m∗ + Vc(r)+ H β
so. (5)

Due to the circular symmetry of the problem, it is natural to rewrite the Hamiltonian in polar
coordinates [32]

H = − h̄2

2m∗

[
∂2

∂r 2
+ 1

r

∂

∂r
− 1

r 2

(
i
∂

∂ϕ

)2
]

+ Vc(r)+ λ2

h̄
e

Er (r)

r

(
−ih̄

∂

∂ϕ

)
σz, (6)

because the electric field has just the radial component. It follows that Lz = −ih̄ ∂
∂ϕ

and σz

commute with the Hamiltonian Ĥ and the corresponding eigenvalues are ±h̄μ for Lz and ±1
for σz .

In the case of a thin ring, i.e., when the radius R0 of the ring is much larger than the radial
width of the wavefunction, it is convenient to project the Hamiltonian on the eigenstates of

H0 = − h̄2

2m∗

[
∂2

∂r 2
+ 1

r

∂

∂r

]
+ Vc(r).

To be specific, we use a parabolic radial confining potential

Vc(r) = 1
2 m∗ω2

d(r − R0)
2, (7)

for which the radial width of the wavefunction is given by lω. In the following, we assume
lω/R0 	 1 and neglect contributions of order lω/R0 to H0 and to the centrifugal term,

Hc 
 − h̄2

2m∗ R2
0

∂2

∂ϕ2
= h̄ωR

∂2

∂ϕ2
.

In this limit, H0 reduces to

H0 = − h̄2

2m∗

[
∂2

∂r 2

]
+ 1

2
m∗ω2

d(r − R0)
2. (8)

After some tedious calculations (see appendix) we are able to obtain the energy spectrum
of H0 = Hc = HSO as

εn,μ,s ∼ h̄
√
ω2

d + 2ωcωRμs(n + 1
2 )+ h̄ωRμ

2. (9)

The corresponding band structure is shown in figure 1. It follows that for fixed values of
the Fermi energy, εF, and of the band n there are four different eigenstates 
s

n,μ, i.e. particles
with fixed Fermi energy εF can go through the ring with four different wavenumbers ±μ±1/2,
depending on the spin and direction of motion (±). Moreover the presence of non-vanishing β
term implies an edge localization of the currents depending on the electron spins, also giving
the presence of two localized spin currents with opposite chiralities [6].

Now we want to remark the presence of a spin splitting which is the basis of the
interference phenomena in the transport through the ring. In the typical Aharonov–Bohm
devices the phase difference is due to the enclosed flux of an external magnetic field. In the
presence of a β SO coupling the phase difference is generated by the splitting of the opposite
spin polarized subbands.

In the presence of β coupling the energy splitting is such that particles with Fermi energy
εF can go through the ring with four different wavenumbers λμλ,s , depending on the spin (s)
and direction of motion (λ = ±). The quantities λμλ,s are obtained by solving εμ,n = εF and
are not required to be integer. Because of the symmetry of the system, we can also obtain that
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Figure 1. Band structure with and without the effects of the SO coupling. Notice the splitting: for
each value of the Fermi energy εF and for a fixed band n, there are four different eigenvalues. This
spin dependent splitting in the energy allows for the interference phenomena that we next discuss.

μ+,↑ = μ−,↓ and μ−,↑ = μ+,↓. Next the fundamental quantity that we take into account is the
phase difference π�μ, where

�μ = μ+,↑ − μ−,↑ = μ−,↓ − μ+,↓ ∼ 2
ωc

ωd
.

3. Theoretical approach to the transport through a ring

3.1. Ballistic transport and Landauer formula

We first consider the case where the 1D ring of section 2.2 is symmetrically coupled to two
contact leads (figure 3 top panel, left) in order to study the transport properties of the system
subject to a constant, low bias voltage (linear regime). To this end, we calculate the zero-
temperature conductance G based on the Landauer formula [33]

G = e2

h

M∑
n′,n=0

∑
σ ′,σ

T σ ′σ
n′n , (10)

where T σ ′σ
n′ n denotes the quantum probability of transmission between incoming (n, σ ) and

outgoing (n′, σ ′) asymptotic states defined on semi-infinite ballistic leads. The labels n, n′ and
σ, σ ′ refer to the corresponding mode and spin quantum numbers, respectively. In our case
where σz commutes with the Hamiltonian T ↑↓ = T ↓↑ = 0. We also limit our analysis to the
case of just one mode involved: n = n′ = 0.

The Landauer formula works in the ballistic transport regime, in which scattering with
impurities can be neglected and the dimensions of the sample are reduced below the mean free
path of the electrons. Here we think of ring conductors smaller than the dephasing length Lφ ,
i.e. with radius R � 1 μm for low temperatures (T 	 1 K). We also assume that this regime is
not destroyed by the presence of just one obstacle as we will discuss below. We want also point
out that the Landauer formula in the form of equation (10) works just at T = 0 while a more
general formulation at finite temperatures has to take in account the width of the distribution of
injected electrons.
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Figure 2. Oscillations in the transmission (and reflection) due to the difference of the phases of
the waves with opposite chiralities. This is a quite general result that does not depend on the cause
which gives the phase difference,�μ.

3.2. Theoretical treatment of the scattering

We approach this scattering problem using the quantum waveguide theory [34]. For the strictly
one-dimensional ring the wavefunctions in different regions for each value of the spin are given
below:

ψI = eikx1 + rse
−ikx1

ψII = Ase
iμ+,sϕ + Bse

−iμ−,sϕ

ψIII = Cse
iμ+,sϕ + Dse

−iμ−,sϕ

ψIV = tse
ikx2 ,

where we can assume the wavevector of the incident propagating electrons in the leads
k ∼ μ/R0.

Thus we use the Griffith boundary condition [35], which states that the wavefunction is
continuous and that the current density is conserved at each intersection. Thus we obtain the
transmission coefficients.

3.3. Interference and oscillations in the transmission

Next we assume μ+,↑ = μ−,↓ = μ0 +�μ and μ+,↑ = μ−,↓ = μ0 −�μ with �μ depending
on the strength of the β coupling.

Thus we obtain the transmission coefficient as we show in figure 2, where the oscillations
in the transmission are plotted as a function of the difference of phase, rescaled by factor π ,
i.e. �μ. Moreover it is clear that this kind of device is unable to produce a spin polarized
current, because it results that T ↑↑ = T ↓↓.

The same result can be obtained by introducing a cut in the ring as an infinite barrier at
ϕ = ϕB. In figure 3 we show the oscillations in the transmission versus the position of the
barrier. Also in this case, there is no way to select a spin polarized current, because it results
that T ↑↑ = T ↓↓.

4. Modulation of spin unpolarized currents

Our main goal is to obtain a modulation of spin unpolarized currents. In order to do that, we
need a symmetry breaking for the transport of opposite spin polarized current, i.e. T ↑↑ �= T ↓↓.

6
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Figure 3. Top: left: schematic diagram of a ring connected to two leads. Center: schematic drawing
of the ring with a cut-off in ϕB = 3π/2, i.e. interrupted by a totally reflecting barrier. On the right,
the presence of a non-magnetic obstacle. Bottom: oscillations in the transmission (and reflection)
versus the cut position along the ring.

A central role, in order to pursue this goal, can be played by the presence of one or more
obstacles along the path of the electrons along the ring. This is the case of impurities, disorder
or restrictions in the channel’s width (e.g. due to the presence of a quantum point contact along
the channel). Next we analyze the presence of just one obstacle and we name it a single non-
magnetic obstacle in analogy to the non-magnetic impurity discussed in [19].

4.1. Effects of a non-magnetic obstacle

In order to discuss the effect of a non-magnetic obstacle on the transmission of the ring, we
have to introduce a correction in our model. To simplify the problem, we will now assume that
the obstacle is a delta function barrier V0δ(ϕ − ϕB). Thus we can calculate the transmission
by imposing the boundary conditions. Results are reported in figure 4. In the presence of the
obstacle the symmetry between the opposite spin polarization is broken and the transmission
T ↑↑ differs from T ↓↓ (see figure 4 top). It follows that a spin polarized current can be observed
at any values of �μ. Thus in the presence of just one obstacle the ring is able to select a
polarized current.

From figure 4 it is evident that the transmission polarized spin current is controlled by the
phase difference, as well as by the modulation, analogously to the transmission charge current.
In order to see this modulation clearly, we introduce a dimensionless quantity Pz to describe
the polarization along the Sz spin axis of current transmitted through the Q1D ring, which is
defined by

Pz = Pz(π�μ) = j↑ − j↓
j↑ + j↓

= T ↑↑ − T ↓↓

T ↑↑ + T ↓↓ . (11)

7
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Figure 4. Transmission of the ring with a non-magnetic obstacle at ϕB = 3π/2. Top: the spin
transmissions versus the phase difference �μ. Bottom: the extrapolated polarization, Pz , given in
equation (11) of the emerging current.

Here the spin resolved currents js were obtained employing the Landauer formula and Pz turns
out to be independent from the momentum of the incident charge carriers. This could yield an
important advantage for device applications. Here Pz is similar to the spin injection rate defined
in ferromagnetic/semiconductor/ferromagnetic heterostructures [36], and it can be measured
experimentally [37].

5. Modulation of spin current based on the Rashba SO coupling

5.1. α SO coupling

In what follows we take in account the natural α (Rashba) coupling [9]. In semiconductors
heterostructures, where a 2DEG is confined in a potential well along the z direction, the SO
interaction is of the type proposed by Rashba [38]: it arises from the asymmetry of the confining
potential which occurs in the physical realization of the 2DEG, e.g. due to the band offset
between AlGaAs and GaAs. In this case the SO Hamiltonian in equation (1) becomes

Hα = α

h̄
(σx py − σy px), (12)

that in polar coordinates can be written as

Hα = −α
r
σr

(
i
∂

∂ϕ

)
+ iασϕ

∂

∂r
− i

2

α

r
σϕ. (13)

Here σr = cos ϕ σx + sinϕ σy and σϕ = − sinϕ σx + cosϕ σy . In the case of a thin ring, i.e. in
the strictly one-dimensional case, when the radius R of the ring is much larger than the radial
width of the wavefunction lω, we can neglect the second term in the rhs of equation (13) and
assume r = R, in agreement with the result in equation (2) of [28].

8
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As in the case of β coupling we can introduce an effective magnetic field which in this
case is oriented in the plane of the ring.

5.2. Energy bands and wavefunctions

After some tedious calculations we are able to obtain the energy spectrum [28] as

εn,μ,s = h̄ωd

(
n + 1

2

)
+ h̄ωR

(
μ+ 1

2

)2

+ h̄ωR

4
+ sh̄

√
ω2

R + ω2
α|μ+ 1

2 |, (14)

where ωα = α/(h̄ R) and s is the spin polarization. If we introduce j ≡ μ+ 1/2 equation (14)
becomes

ε0, j,s = h̄ωd

2
+ h̄ωR

(
j − s

jα
2

)2

+ h̄
ω2
α

ωR
, (15)

where jα ≡
√

1 + ω2
α

ω2
R

.

It follows that for a fixed value of the Fermi energy, εF, there are four different eigenstates

s

±,0,μ, i.e. particles can go through the ring with four different wavenumbers μs±,s , depending
on the spin (s) and direction of motion (±) as in the case discussed in the previous sections.
The wavenumbers can be obtained by solving the equation

ε̃ = h̄ωR

(
μ+ �±

AC

2π

)2

,

where ε̃ ≡ εF − h̄ωd/2 − h̄ω2
α/ωR and �±

AC = −π(1 ± Jα) are the Aharonov–Casher phases
which are acquired while the two spin states evolve in the ring in the presence of the Rashba
electric field.

The main difference from the β case is that the spin are now polarized in a different
direction, i.e. ŝα with an angle 2θ with respect to the z axis corresponding to tan(2θ) = ωα

ωR
.

Thus that we can write the wavefunctions as


+
±,0,μ = u0(r)e

iμ±,+ϕ
(

cos(θ)
sin(θ)eiϕ

)


−
±,0,μ = u0(r)e

iμ±,−ϕ
(

sin(θ)
− cos(θ)eiϕ

)
.

Thus fundamental quantity which gives the phase difference is �μπ is now given by
�μ = jα − 1.

5.3. From the transmission to the conductance

Now we can develop the calculations based on the Landauer formula in order to obtain the
zero-temperature conductance as discussed in section 3. This approach, as we discussed above,
is based on the calculation of the transmission amplitudes T ss ′ = |t ss ′ |2. Thus we have to
solve the scattering problem analogously to that reported in section 3 by using the quantum
waveguide theory.

Next we assume that the spin polarization along ŝα is a constant of motion; thus t+− =
t−+ = 0. Now we can write the coefficients t in the two different bases as

t↑↑ = cos2(θ)t++ + sin2(θ)t−−

t↑↓ = − cos(θ) sin(θ)t++ + cos(θ) sin(θ)t−−

t↓↓ = − sin2(θ)t++ − cos2(θ)t−−

t↓↑ = cos(θ) sin(θ)t++ − cos(θ) sin(θ)t−−.

(16)

It follows that t↑↓ = −t↓↑.

9
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5.4. Modulation of a spin current

Our main goal is to obtain a modulation of spin unpolarized currents. In order to do that, we
need a symmetry breaking for the transport of opposite spin polarized current, i.e. T ↑↑ �= T ↓↓
or T ↑↓ �= T ↑↓. The equations in equation (16) showed that if t++ = t−− there is no symmetry
breaking, in fact also t↑↓ = −t↓↑. Thus as in the case of the β coupling no spin polarization is
present when we consider a clean ring.

A central role, in order to obtain a modulation of spin unpolarized currents, can be played
by the presence of one or more obstacles along the path of the electrons in the ring as we
discussed above. The corresponding symmetry breaking gives a significant spin polarization of
the transmitted current

Pz = T ↑↑ − T ↓↓

T ↑↑ + T ↓↓ + 2T ↑↓ .

It follows that a spin polarized current can be observed due to the Rashba phase shift (see
figure 7). Thus in the presence of just one obstacle the ring is able to select a polarized current.
However by a comparison with the plots corresponding to the β coupling it seems clear that a
β coupling based mechanism could be more efficient in obtaining a spin polarized current.

6. Discussion

The ring conductors have played an essential role in observing how coherent superpositions
of quantum states (i.e., quantum interference effects) on the mesoscopic scale leave imprints
on measurable transport properties [39]. In fact they represent a solid state realization of
a two-slit experiment, where an electron entering the ring can propagate in two possible
directions (clockwise and counterclockwise). In these devices superpositions of quantum states
are sensitive to the acquired topological phases in a magnetic (Aharonov–Bohm effect) or
an electric (Aharonov–Casher effect for particles with spin) external field whose variations
generate an oscillatory pattern of the ring conductance [15].

In this paper we found that a non-vanishing spin polarized current can be measured for
a two-lead ballistic ring in the presence of the natural α and β term of the SO coupling. As
we showed in figures 5 and 6, some peaks in the spin polarization, Pz , are present near the
measurable peaks in the charge conductance. All of our calculations are limited to the lowest
subband but can be easily extended to the several subband case.

Moreover, in order to observe these oscillations at finite temperatures, the width of the
distribution of injected electrons should not exceed the gap between the adjacent peaks of
G in figures 5 and 6, while its center (i.e., εF for the reservoirs) should be adjusted to their
position [40]. However for the spin filter realization it is relevant to evaluate the efficiency of
the device at non-zero temperature. Thus in the following we generalize our calculations to
finite temperature T . The conductance at finite T is given by [41]

G = −(e2/h)
∑
σ

∫ ∞

0
dε
∂ f (ε, εF, T )

∂ε
|Tσ (εF)|2, (17)

where f is the Fermi distribution function and T the temperature. As we show in figure 7
the peaks disappear when the temperature becomes larger than some tens of kelvins. Thus the
proposed mechanism for the spin polarization works just at low temperatures.

In several papers (e.g. [28, 40]) it was discussed how the tuning of the Rashba SO coupling
in a semiconductor heterostructure hosting the ring generates quasiperiodic oscillations of the
predicted spin Hall current, due to spin sensitive quantum interference effects caused by the

10



J. Phys.: Condens. Matter 19 (2007) 395020 S Bellucci and P Onorato

Figure 5. The spin polarization Pz of the current exiting from a 1D ring (red line), and the charge
conductance, as functions of the Fermi energy εF for two realistic strengths of the SO β coupling.
We can observe that the presence of peaks in the spin polarization is related to dips in the charge
transport. These dips in G should correspond to the values of the Fermi energy which give integer
angular momenta (μ = n), but the presence of spin splitting doubles the peaks because of the
symmetry breaking. We observe that the maximum spin polarization is obtained near the odd peaks.

difference in the Aharonov–Casher phase accumulated by opposite spin states. In those cases
an additional external field was needed in addition to the natural Rashba coupling. The authors
of [28, 40] proposed that the value of the α SOC could be tuned by controlling the transverse
electric field by givingωα/ωR in the range 0–10. In the present work we discussed the transport
in the presence of one non-magnetic obstacle in the ring with just the natural SO couplings,
where the spin polarization of the current is governed by the gate voltage modulation. We
demonstrated that a spin polarized current can be induced when an unpolarized charge current
is injected in the ring thanks to the presence of the obstacle.

In sections 2 and 4 of this paper we assumed the α coupling to be negligible, although in
general this term is comparable to (or larger than) the β coupling term. By comparison with
typical quantum well and transverse electric fields, the SO coupling constant β can be roughly
estimated as at least β ∼ 0.1α [29]. Moreover, in square quantum wells where the value of
α is considerably diminished [42], the constant β may well compete with α. Furthermore the
effects of the Rashba term on the spin polarization are often significant just for strong values
of α, some order of magnitude larger than ∼10−11 eV m (‘natural’ values of α at the GaAs
interface [43]) while the in-plane β coupling gives a good spin polarization in the currents also
for small values of β , that are however larger than the usual ones (see [25]).

It is clearly more difficult to modulate the strength of the β SO coupling by acting
on the split gate voltage. Thus the feasibility of a β governed device mainly depends on
its size and on the materials. The fundamental theoretical parameter in section 4, �μ, is
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Figure 6. The spin polarization Pz of the current exiting from a 1D ring (grey, red in the online
version), and the charge conductance, as functions of the Fermi energy εF for two realistic strengths
of the SO α coupling. We can observe that the presence of peaks in the spin polarization is related
to dips in the charge transport. These dips in G should correspond to the values of the Fermi energy
which give integer angular momenta (μ = n), but the presence of spin splitting doubles some of
the peaks, because of the symmetry breaking. However this splitting is clear just for strong values
of the coupling. We observe that the spin polarization is significant near the odd peaks, whereas it
vanishes in correspondence with the even peaks.

Figure 7. The charge conductance for three different scales of temperatures between 0 K and some
hundred degrees.

proportional to the ratio ωc/ωd , corresponding to λ2/ l2
ω, i.e. the ratio between a material

dependent parameter λ and a size dependent one lω (that can be assumed to be a fraction
of the real width, W , of the conducting channel). The SO strengths have been theoretically
evaluated for some semiconductors compounds. In a QW (W ∼ 100) patterned in InGaAs/InP
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heterostructures, where λ2 takes values between 0.5 and 1.5 nm2, it results that h̄ωc ∼
10−6−10−4 eV, corresponding to ωc/ω ∼ 10−4–10−3 as in InSb, where λ2 ∼ 500 Å

2
. For

GaAs heterostructures, λ2 is one order of magnitude smaller (∼4.4 Å
2
) than in InGaAs/InP,

whereas for HgTe based heterostructures it can be more than three times larger [44]. However,
the lithographical width of a wire defined in a 2DEG can be as small as 20 nm [45]; thus we
can realistically assume that ωc/ωd runs from 1 × 10−6 to 1 × 10−1.4 Here we can realistically
assume that the ring has a width of just some tens of nm.

The case reported in section 5 is simpler to realize because in typical materials natural α
is larger than β and can also be tuned by controlling the transverse electric field. The phase
shift is proportional to ωα/ωR so that a further modulation of the phase shift can be obtained
by acting on the ring’s radius.

Thus, we can propose the discussed devices as spin filters based on the Q1D ring.
We showed how the spin filtering is grounded on the presence of a non-magnetic obstacle
which produces a more or less spin polarized current. However, also in samples where spin
polarization is quite a bit smaller, the efficiency of a two leads ring as a spin filter can be
amplified by realizing a series of these devices.
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Appendix. Spectrum and spin splitting

Next we can introduce the new variable ξ = r − R0 (pξ = −ih̄ ∂
∂r ). The eigenvalues of Lz are

h̄μ and the ones of σz are s (Sz ≡ h̄
2σz). Thus we can write

H0 + Hc + H β

SO 
 p2
ξ

2m∗ + m∗

2
ω2

dξ
2 + m∗

2
ω2
βsμξ 2 − m∗

2
ω2
βsμ2R0ξ + h̄ωRμ

2, (A.1)

where ω2
β ≡ β

m∗lω R2
0
. Now we can introduce the new variables ωT(μ, s)2 ≡ ω2

d + ω2
βsμ and

ξ0(μ, s) = μs
ω2
β

ωT(μ,s)2
R0, in order to obtain

H 
 p2
ξ

2m∗ + m∗ωT(μ, s)2

2
(ξ − ξ0(μ, s))2 + h̄ωRμ

2 − m∗ω4
β R2

0

2ωT(μ, s)2
,

from which the energy spectrum follows:

εn,μ,s = h̄ωT(μ, s)

(
n + 1

2

)
+ h̄ωRμ

2 − m∗ω4
β R2

0

2ωT(μ, s)2
. (A.2)

It follows that for fixed values of the Fermi energy, εF, and of the band n there are four
different eigenstates which have the general form


s
n,μ = un (r − R0 − ξ0(s, μ)) eiμϕχs,

where un(x) are the eigenstates of the 1D harmonic oscillator.
As we showed in [6] the presence of a non-vanishing β term implies an edge localization

of the currents depending on the electron spins, also giving the presence of two localized spin
currents with opposite chiralities. However, in our calculations we assume un(ξ − ξ0(s, μ)) 

un(ξ + ξ0(s, μ)), in order to reduce the problem to a strictly one-dimensional one.

4 In any case W should be larger than λF, so that at least one conduction mode is occupied.
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